Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
mBio ; : e0287521, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2268745

RESUMO

Bats are well-recognized reservoirs of zoonotic viruses. Several spillover events from bats to humans have been reported, causing severe epidemic or endemic diseases including severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome-CoV (MERS-CoV), henipaviruses, and filoviruses. In this study, a novel rhabdovirus species, provisionally named Rhinolophus rhabdovirus DPuer (DPRV), was identified from the horseshoe bat (Rhinolophus affinis) in Yunnan province, China, using next-generation sequencing. DPRV shedding in the spleen, liver, lung, and intestinal contents of wild bats with high viral loads was detected by real-time quantitative PCR, indicating that DPRV has tropism for multiple host tissues. Furthermore, DPRV can replicate in vitro in multiple mammalian cell lines, including BHK-21, A549, and MA104 cells, with the highest efficiency in hamster kidney cell line BHK-21, suggesting infectivity of DPRV in these cell line-derived hosts. Ultrastructure analysis revealed a characteristic bullet-shaped morphology and tightly clustered distribution of DPRV particles in the intracellular space. DPRV replicated efficiently in suckling mouse brains and caused death of suckling mice; death rates increased with passaging of DPRV in suckling mice. Moreover, 421 serum samples were collected from individuals who lived near the bat collection site and had fever symptoms within 1 year. DPRV-specific antibodies were detected in 20 (4.75%) human serum samples by indirect immunofluorescence assay. Furthermore, 10 (2.38%) serum samples were DPRV positive according to plaque reduction neutralization assay, which revealed potential transmission of DPRV from bats to humans and highlighted the potential public health risk. Potential vector association with DPRV was not found with negative viral RNA in bloodsucking arthropods. IMPORTANCE We identified a novel rhabdovirus from the horseshoe bat (Rhinolophus thomasi) in China with probable infectivity in humans. DPRV was isolated in vitro from several mammalian cell lines, indicating wide host tropism, excluding bats, of DPRV. DPRV replicated in the brains of suckling mice, and the death rate of suckling mice increased with passaging of DPRV in vivo. Serological tests indicated the possible infectivity of DPRV in humans and the potential transmission to humans. The present findings provide preliminary evidence for the potential risk of DPRV to public health. Additional studies with active surveillance are needed to address interspecies transmission and determine the pathogenicity of DPRV in humans.

3.
Sci Adv ; 7(38): eabb5933, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1440796

RESUMO

Growing evidence indicates the vital role of lipid metabolites in innate immunity. The lipid lysophosphatidic acid (LPA) concentrations are enhanced in patients upon HCV or SARS-CoV-2 infection, but the function of LPA and its receptors in innate immunity is largely unknown. Here, we found that viral infection promoted the G protein­coupled receptor LPA1 expression, and LPA restrained type I/III interferon production through LPA1. Mechanistically, LPA1 signaling activated ROCK1/2, which phosphorylated IRF3 Ser97 to suppress IRF3 activation. Targeting LPA1 or ROCK in macrophages, fibroblasts, epithelial cells, and LPA1 conditional KO mice promoted interferon-induced clearance of multiple viruses. LPA1 was colocalized with the receptor ACE2 in lung and intestine. Together with previous findings that LPA1 and ROCK1/2 promoted vascular leaking or lung fibrosis, we propose that the current available preclinical drugs targeting the LPA1-ROCK module might protect from SARS-CoV-2 or various virus infections in the intestine or lung.

4.
Emerg Microbes Infect ; 10(1): 1683-1690, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1341091

RESUMO

At the end of 2019, A new type of beta-CoV, SARS-CoV-2 emerged and triggered the COVID-19 pandemic, which spread overwhelmingly around the world in less than a year. However, the origin and direct ancestral viruses of SARS-CoV-2 remain unknown. RaTG13, a novel coronavirus found in bats in China's Yunnan Province, is the closest relative virus of the SARS-CoV-2 identified so far. In this study, a new SARS-CoV-2 related virus, provisionally named PrC31, was discovered in Yunnan province by retrospectively analyse bat next generation sequencing (NGS) data of intestinal samples collected in 2018. PrC31 shared 90.7% and 92.0% nucleotide identities to the genomes of SARS-CoV-2 and the bat SARSr-CoV ZC45, respectively. Sequence alignment of PrC31 showed that several genomic regions, especially orf1a and orf8 had the highest homology with those corresponding genomic regions of SARS-CoV-2 than any other related viruses. Phylogenetic analysis indicated that PrC31 shared a common ancestor with SARS-CoV-2 in evolutionary history. The differences between the PrC31 and SARS-CoV-2 genomes were mainly manifested in the spike genes. The amino acid homology between the receptor binding domains of PrC31 and SARS-CoV-2 was only 64.2%. Importantly, recombination analysis revealed that PrC31 underwent multiple complex recombination events (including three recombination breakpoints) involving the SARS-CoV and SARS-CoV-2 sub-lineages, indicating that PrC31 evolved from yet-to-be-identified intermediate recombination strains. Combined with previous studies, it is revealed that the beta-CoVs may possess a more complex recombination mechanism than we thought.


Assuntos
Quirópteros/virologia , Recombinação Genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sequência de Aminoácidos , Animais , China , Genoma Viral , Filogenia , SARS-CoV-2/classificação , Alinhamento de Sequência , Proteínas Virais/genética
6.
Cell Regen ; 9(1): 19, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: covidwho-886008
7.
Med Microbiol Immunol ; 209(6): 657-668, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-734093

RESUMO

The magnitude of SARS-CoV-2 infection, the dynamic changes of immune parameters in patients with the novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. The clinical and laboratory results from 154 confirmed COVID-19 patients were collected. The SARS-CoV-2 RNA levels in patients were estimated using the Ct values of specific RT-PCR tests. The lymphocyte subsets and cytokine profiles in the peripheral blood were analyzed by flow cytometry and specific immunoassays. 154 confirmed COVID-19 patients were clinically examined up to 4 weeks after admission. The initial SARS-CoV-2 RNA Ct values at admission varied, but were comparable in the patient groups classified according to the age, gender, underlying diseases, and disease severity. Three days after admission, significant higher Ct values were found in severe cases. Significantly reduced counts of T cells and T cell subsets were found in patients with old age and underlying diseases at admission and were characteristic for the development of severe COVID-19. Severe COVID-19 developed preferentially in patients with underlying compromised immunity and was not associated with initial virus levels. Higher SARS-CoV-2 RNA levels in severe cases were apparently a result of impaired immune control associated with dysregulation of inflammation.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , RNA Viral/análise , Linfócitos T/imunologia , Adulto , Idoso , Betacoronavirus/imunologia , Biomarcadores/sangue , COVID-19 , China/epidemiologia , Estudos de Coortes , Infecções por Coronavirus/sangue , Feminino , Humanos , Mediadores da Inflamação/sangue , Contagem de Linfócitos , Subpopulações de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Prognóstico , RNA Viral/genética , Estudos Retrospectivos , SARS-CoV-2 , Carga Viral
8.
Aging (Albany NY) ; 12(14): 13895-13904, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: covidwho-690747

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a novel infectious disease that may cause fever, dry cough, fatigue and shortness of breath. The impact of COVID-19 on liver function is not well described. RESULTS: We found that the overall frequency of LFT abnormality was 17.6%. Frequency of LFT abnormality was significantly greater in patients with severe/critical (SC) COVID-19 compared to those with mild/moderate (MM) COVID-19 (32.4% vs 11.6%, p=0.011). Among patients with LFT abnormality, the median age was significantly higher in the SC group compared to the MM group (52 vs 39 years, p=0.021). CONCLUSION: COVID-19 is frequently associated with mild liver function abnormality, particularly in individuals with severe/critical COVID-19 who were older. Liver function should be monitored carefully during infection, with judicious use of hepatotoxic agents where possible and avoidance of prolonged hypotension to minimize liver injury in older patients. METHODS: The No. 2 People's Hospital of Fuyang City in China has admitted a total of 159 patients with confirmed COVID-19 since the outbreak from January 2020 to March 2020. We analyzed the incidence of liver function test (LFT) abnormality in these patients with confirmed COVID-19 infection.


Assuntos
Infecções por Coronavirus/complicações , Hepatopatias/virologia , Pneumonia Viral/complicações , Adulto , Fatores Etários , Idoso , Betacoronavirus , COVID-19 , China/epidemiologia , Feminino , Humanos , Incidência , Hepatopatias/epidemiologia , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
9.
Build Environ ; 181: 107149, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: covidwho-670929

RESUMO

Reasonable equipment layout is essential for creating a healthy and safe environment, especially in a three-level biosafety laboratory with high potential risk factors of infection. Since 2019, COVID-19, an emerging infection has swept the world and caused severe losses. Biosafety laboratories are mandatory sites for detecting high-risk viruses, so related research is urgently needed to prevent further laboratory-acquired infections of operators. This study investigated the effects of obstacles on exposure infection of staff in a biosafety laboratory with related experimental equipment. The numerical simulation results are highly verified by the measured results. The results indicate that although the equipment layout does not affect the bioaerosol removal time, nearly 17% of the pollutant particles in the actual laboratory cannot be discharged effectively compared with the ideal situation. These particles lingered in the lower space under the influence of vortex, which would increase the respiratory risk of operators. In addition, after the experiment a large part of bioaerosol particles would be captured by equipment and floor, and the deposition rate per unit area is 0.45%/m2 and 0.8%/m2, respectively. Although the results show that the equipment layout could reduce the pollution on the floor, the disinfection is still an important link, especially on the surfaces of equipment. Meanwhile, the result also indicates that the action should be light and slow when operating in BSL-3 laboratory, so as to avoid the secondary suspension pollution of bioaerosol particles on the equipment surface and floor.

10.
Build Environ ; 179: 106991, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: covidwho-636853

RESUMO

Laboratory-acquired infections (LAIs) are defined as infections of laboratory staff by exposure to pathogenic microorganisms during an experimental procedure. For a biosafety level-3 (BSL-3) laboratory with a high potential of exposure, reducing risks and threats relevant to LAIs has become a critical concern, especially after the recent outbreak of Novel Coronavirus causing COVID-19 in Wuhan, China. This study aimed to investigate the spatial-temporal characteristics of bioaerosol dispersion and deposition of two kinds of bioaerosols (Serratia marcescens and phage ΦX174). A combination of laboratory experiment and numerical simulation was adopted to explore bioaerosol removal. Three-dimensional concentration iso-surface mapping in conjunction with flow field analysis was employed to elucidate bioaerosol migration and deposition behavior. The total deposition number and unit area deposition ratio were calculated for different surfaces. The results indicate that bioaerosol concentration remains stable for up to 400 s after release, and that almost 70% of all bioaerosol particles become deposited on the surfaces of walls and equipment. Vortex flow regions and high-concentration regions were determined, and the most severely contaminated surfaces and locations were identified. Our results could provide the scientific basis for controlling the time interval between different experiments and also provide guidelines for a laboratory disinfection routine. Furthermore, future work regarding laboratory layout optimization and high efficiency air distribution for bioaerosol removal in a BSL-3 laboratory should be emphasized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA